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Abstract

Synthetic data is a promising solution for use-cases such as
privacy-friendly data release and complementing real data to
train machine learning algorithms that are more fair and ro-
bust to distribution shifts. However, there is limited work on
responsible, ethical and trustworthy synthetic data generation
systems. Recently, Zhao et al. (2023) proposed a general-
purpose decentralised computation system, called Libertas,
that allows individuals to autonomously participate in joint
computations over their data without relying on a trusted cen-
tre. Libertas uses Solid (Social Linked Data) and MPC (Se-
cure Multi-Party Computation) to achieve this goal. Solid is
a specification that lets people store their data securely in de-
centralised data stores called Pods and control access to their
data. MPC refers to the set of cryptographic methods for dif-
ferent parties to jointly compute a function over their inputs
while keeping those inputs private. Thus, Libertas can also be
used to generate synthetic data from real data of individuals in
a responsible way, by ensuring contributor autonomy, decen-
tralisation and privacy. However, the scalability of this system
remains limited due to the high computation and communi-
cation costs in MPC. In this paper, we show how one can use
Trusted Execution Environments (TEEs) to address the scal-
ability challenge. TEEs such as Intel SGX rely on hardware
based features for confidentiality and integrity of code and
data. We discuss a principled approach for integrating TEEs
within the Libertas architecture for scalable differentially pri-
vate synthetic data generation, and support our analysis with
rigorous empirical results on simulated and real datasets and
different synthetic data generation algorithms.

1 Introduction
In today’s data-driven world, the need for large and diverse
datasets is greater than ever. These datasets are instrumental
in training machine learning models, conducting research,
and fuelling innovation across various domains, from health-
care to finance and beyond. However, the acquisition and
sharing of real-world data in a responsible way have become
increasingly challenging due to concerns about privacy, se-
curity and the potential misuse of sensitive information.

In response to these challenges, synthetic data generation
has emerged as a promising solution (Jordon et al. 2022).
Synthetic data refers to artificially generated data that mim-
ics the statistical properties of real-world data. It offers a
way to balance the need for data-driven insights and open

availability with protecting individual privacy (Emam, Mos-
quera, and Hoptroff 2020). Beyond privacy, synthetic data
approaches are also being actively explored to overcome the
limitations and shortcomings of real data for building more
robust artificial intelligence (Xu et al. 2018; Brown 2020).

There exists a rich body of research dedicated to the
algorithmic intricacies of synthetic data generation (Hu
et al. 2023). The focus remains on development of novel
algorithms for generating synthetic data with properties
closely mirroring those of real-world data, addressing chal-
lenges such as preserving statistical distributions, correla-
tions, and structural features while guaranteeing individual
privacy. However, while these algorithmic aspects are cru-
cial, for synthetic data to be truly responsible, trustworthy,
and privacy-preserving, it is necessary to take a holistic per-
spective. This encompasses not only the algorithms used for
data synthesis but also the entire lifecycle of data, starting
with the contributors of the real data. Contributor autonomy
should be one of the central tenets of responsible synthetic
data generation. Contributors, who provide the real data,
should have a significant degree of control and decision-
making power throughout the synthetic data generation pro-
cess. This autonomy ensures that their interests and concerns
are taken into account, ultimately promoting trust and ethi-
cal data handling practices.

Further, a common assumption in most synthetic data
generation approaches is the existence of a central curator.
There are several problems with this approach. It expects di-
verse set of contributors to trust a common party to manage
their (real) data, which may not be a practical and inclusive
assumption. The lack of trust can lead to reduced or dishon-
est contributions, in turn lowering the quality of data (Mc-
Sherry and Talwar 2007). The dependency on intermediaries
can also introduce vulnerabilities and privacy risks. It can
lead to a lack of transparency and accountability in the data
generation pipeline.

Our research advances the state-of-the-art in contributor-
centric and decentralised synthetic data generation ap-
proaches. Building upon the work of Zhao et al. (2023), we
develop a system that runs differentially private synthetic
data generation algorithms in a scalable, decentralised and
private manner, while the contributors of original data re-
tain control of their data and their decision to participate
in a given synthetic data generation process. Our approach



requires no alteration in the synthetic data generation al-
gorithm and thus, provides the same level of accuracy and
differential-privacy guarantees as the approaches that as-
sume trusted center (unlike, for e.g., local differential pri-
vacy that has worse accuracy-privacy trade-off).

At the heart of this solution lies Solid (derived from so-
cial linked data), a specification pioneered by Sambra et al.
(2016a). Solid lets people store their data securely in decen-
tralised data stores called Pods and lets them control access
to their data. Unlike current centralised Web and data archi-
tectures, where different applications and organisations col-
lect and keep user data locked away, Solid decouples data
from applications. A variety of user data can be stored in
Solid pods. Different applications can read and write data
to the user pod and provide services using the data, under
user specified preferences. This is useful from a privacy per-
spective but more importantly, people get control over their
data (further discussion on Solid in Section 3). Individuals
may also be willing to contribute the data in their Pods to
generate synthetic data for a variety of causes. However,
for synthetic data generation, computations have to be per-
formed over the data of multiple people. This is challeng-
ing without requiring a trusted center. The challenge is fur-
ther complicated by the fact that Solid Pods lack any local
computation capability. Zhao et al. (2023) proposed a mod-
ular architecture for integrating Secure Multi-Party Compu-
tation (MPC) with Solid, enabling arbitrary computations to
be performed in a decentralised manner over data stored in
Solid Pods. We build upon this recent research and show
how differentially-private synthetic data can be generated in
a scalable manner without compromising the autonomy and
privacy of contributors. Instead of only relying on MPC, we
offer a more scalable alternative that uses both MPC and
Trusted Execution Environments (TEEs). We show how to
implement different steps of synthetic data generation algo-
rithms in MPC and TEEs, utilising MPC where it offers the
most value and using TEEs elsewhere to overcome MPC’s
performance challenges. We analyse the scalability and pri-
vacy related strengths and limitations of the approach.

In the rest of this paper, we will discuss background con-
cepts, describe the details of our design, explain our choices,
and provide empirical evaluation of our system and compar-
ison with baselines. We finally conclude the paper with dis-
cussion on future work.

2 Problem Description
A synthetic dataset is a substitute for an original dataset that
has the same format and reflects the statistical properties of
the original dataset, without reproducing the records in the
original. In our settings, different individuals hold their own
data records in a decentralised manner. We are interested
in generating synthetic data that mimics the properties of
a dataset containing records of all individuals who are will-
ing to participate in the synthetic data generation process,
without requiring a trusted centre and ensuring that individ-
uals have full autonomy and privacy. During the synthetic
data generation process, the original data records should be
kept confidential with the respective individuals and not re-
vealed to others. This is also referred to as input privacy.

From the synthetic data, an adversary should not be able to
make undesired inferences about the original data records or
the individuals. This is also referred to as output privacy.

In this paper, we consider synthetic data generation algo-
rithms that provide differential-privacy guarantees (Dwork
et al. 2006) for output privacy. However, the algorithms to
generate differentially-private synthetic data, by themselves,
provide neither decentralisation nor input privacy. We there-
fore need additional mechanisms. For decentralisation, we
need decentralised storage, access control and reduced de-
pendence on a trusted center for the computation steps in-
volved in the synthetic data generation algorithms.

Zhao et al. (2023) proposed a novel architecture, Libertas,
to integrate Personal Data Stores with Secure Multi-Party
Computation (MPC). Personal Data Stores provide individ-
uals decentralised storage and access control for their data
records. Secure Multi-Party Computation (MPC) provides
input privacy and allows individuals to participate in arbi-
trary computations over their data records collectively with-
out relying on a trusted center. Decentralised synthetic data
generation with input and output privacy is thus one example
of a use-case that can be realised using Libertas. However,
the scalability of this approach remains a challenging prob-
lem due to high computation and communication costs of
the MPC protocols. We address this technical challenge in
our work. We first briefly provide background on personal
data stores, secure multi-Party computation, Libertas archi-
tecture, differential-privacy and the synthetic data genera-
tion algorithms that are of interest to us in this paper. Ap-
pendix A contains an expanded background section, with
details that can not be covered here due to space constraints.

3 Background
Personal Data Stores and Solid
In response to increasing centralisation of data and loss of
user autonomy, several decentralised data architectures have
been proposed that aim to give users more control over their
personal data. One such approach that has gained consider-
able traction is Personal Data Stores (PDS) (Sambra et al.
2016b; Mansour et al. 2016).

Under this decentralised data paradigm, users store their
data in a Pod (Personal Online Datastore). A Pod provides
granular control to users over who can access which data as
well as secure transmission of data for authorised requests.
The apps and services that they use (for e.g. various Web
based applications, online social platforms, health service
applications etc), also read and write data to the user’s Pod.
Users can transfer their data from one Pod service provider
to another, including the option to self host. This unlocks a
whole new paradigm for app design based on interoperabil-
ity, a key design aspect (Linked Data) of Solid. The decou-
pling of data and apps reduces the need for expensive data
collection across platforms, thereby benefiting developers as
well. Pods support both structured and unstructured data.

There are several PDS projects ranging from purely aca-
demic implementations to those with commercial offerings,
among them openPDS (De Montjoye et al. 2014), Databox
(Mortier et al. 2016), and Solid (Mansour et al. 2016). These



vary in their protocol design and the demands they place
on the features a Pod must support. We focus on Solid be-
cause of its open design based on existing Web standards and
growing adoption. Appendix A contains more details about
Solid.

While Solid provides users control of their data and al-
lows Web applications to read/write based on user prefer-
ences, it leaves open a challenging problem. When compu-
tations have to be performed over the data of multiple users,
Solid does not specify how this can be done. Solid Pods also
do not have any local computation capability in the current
specification. This problem has recently been addressed by
the Libertas architecture proposed by Zhao et al. (2023). Be-
fore discussing the Libertas architecture, we provide a brief
introduction to Secure Multi-Party Computation (MPC).

Secure Multi-Party Computation (MPC)
Secure multi-party computation (MPC) (Evans et al. 2018)
is a set of cryptographic protocols for ensuring that one or
more parties can participate in the decentralised computa-
tion of a function over some privately held inputs such that
no party learns anything about the private input of another
party. The only information that can be inferred about the
private input is whatever can be inferred from the output of
the function alone. 1 More formally, given n parties P1, ...,
Pn, their corresponding inputs x1, ..., xn and a function f ,
an MPC protocol computes y = f(x1, ..., xn) without re-
vealing input xi to party Pj where i 6= j.

In the past few decades, there has been significant re-
search on the development of efficient MPC protocols.
The cryptographic primitives that are typically used to im-
plement MPC are secret sharing schemes (Shamir 1979),
garbled circuits (Yao 1986), and oblivious transfer (Rabin
2005). We focus on secret sharing. Further, MPC protocols
differ in their security assumptions regarding the adversary
(further background in Appendix A). In our experimental
analysis, we use protocols with varying assumptions.

Libertas Architecture by Zhao et al. (2023)
Libertas architecture, proposed by Zhao et al. (2023), ex-
tends Solid (while adhering to the Solid protocol) to enable
performing computations using MPC on decentralised data
held in individuals’ Pods. Appendix A provides further de-
tails about Libertas and the roles different agents play in
this architecture. Libertas addresses three main limitations
of Solid. First, a user can allow an agent, that has not been
granted access to some data directly, to utilise the data as
input in a multiparty computation procedure, without com-
promising the user privacy. Second, it overcomes the limi-
tations arising due to the lack of computation capability in
Solid Pods, by a mechanism to delegate participation in the
joint computation while users retain control. Third, under
a direct-decentralised model where data providers are also
the protocol players, MPC scales poorly as the number of
players grow. Conversely, the delegated-decentralised model

1Differential-privacy, to be discussed next, addresses this lim-
itation and thus, MPC and differential privacy are complementary
privacy mechanisms.

used in Libertas, with a smaller number of agents acting as
players, offers significantly better scalability. But fundamen-
tally, costs due to MPC protocols remain challenging.

Differential-Privacy
Differential privacy (Dwork et al. 2006) is a rigorous math-
ematical definition of privacy that has become the de facto
standard for output privacy. Many tech companies such as
Apple, Google (Erlingsson, Pihur, and Korolova 2014), and
Microsoft (Ding, Kulkarni, and Yekhanin 2017) have built
privacy-aware systems that use differential privacy. National
Statistical Offices too have begun releasing censuses that
incorporate differential privacy. Differential privacy bounds
the impact any one individual can have on the output of an
algorithm. More formally, a randomised mechanism M :
D → R satisfies (ε, δ)-differential privacy (DP) if for all
neighboring (differing on one element) datasets D,D′ ∈ D
and all subsets of possible outputs S ⊆ R,

Pr[M(D) ∈ S] ≤ exp(ε)Pr[M(D′) ∈ S] + δ

Synthetic Data Generation Algorithms
Any dataset release (including synthetic data) that meaning-
fully preserves statistics of the original dataset will result in a
privacy loss. Thus, there exists a privacy-utility trade-off. We
are interested in synthetic data generation algorithms with
differential-privacy guarantees for output privacy. There ex-
ists several algorithms for differentially-private synthetic
data generation. In this paper, we focus on marginal-based
approaches to synthetic data generation that have achieved
considerable success in practice. Marginal-based algorithms
won the 2018 NIST Differential Privacy Synthetic Data
Competition, for instance, and performed competitively in
other iterations of the contest (McKenna, Miklau, and Shel-
don 2021). Further, we focus on workload aware algorithms.
A workload is a collection of queries that a synthetic dataset
must preserve well. These are the queries that downstream
users of the synthetic dataset might be interested in answer-
ing. In our experiment analysis, we use the following state-
of-the-art algorithms for synthetic data generation: the Mul-
tiplicative Weight Exponential Mechanism (MWEM) algo-
rithm (Hardt, Ligett, and McSherry 2012), the Probabilistic
Graphical Model (PGM) approach (McKenna, Sheldon, and
Miklau 2019), the Relaxed Adaptive Projection (RAP) (Ay-
dore et al. 2021) or Relaxed Tabular approach and the local
consistency methods such as Generative Networks with the
Exponential Mechanism (GEM) (Liu, Vietri, and Wu 2021)
and Approx-Private-PGM (APPGM) (McKenna et al. 2021).
Readers can check further discussion about the algorithms in
Appendix A; while not critical, some knowledge about these
will be useful for easier reading of the rest of the paper.

4 Proposed Approach for Scalable
Decentralised Synthetic Data Generation

To address the issue of high computation and communica-
tion costs incurred in Libertas, due to its dependence on
Secure Multi-Party Computation, we propose an adaptation



tailored for differentially-private synthetic data generation.
Instead of only relying on MPC, we propose a more scal-
able alternative that uses both MPC and Trusted Execution
Environments (TEEs) (Jauernig, Sadeghi, and Stapf 2020;
Li et al. 2023). A Trusted Execution Environment (TEE) is
a secure area in the main processor of a device; examples
of TEEs include Intel SGX (Costan and Devadas 2016) or
AMD SEV (AMD 2020). We implement different steps of
synthetic data generation algorithms in MPC and TEEs, util-
ising MPC where it offers the most value and using TEEs
in other parts of the pipeline to overcome the performance
challenges.

Steps
1. Anonymisation: In the first step, data providers can re-

move personally identifiable information (PII) from data
records. As users of Solid can set access control to each
individual data item in their records, this step can be triv-
ially performed by the data provider through the access
control mechanism.

2. Client-Side Aggregation: The next step is for the chosen
encryption agents in the Libertas architecture to run the
client code. This involves reading the access authorised
data from the Pod of participating data provider and con-
verting it into a histogram representation, possibly per-
forming any binning along the way. This setup allows for
settings where each data provider manages more than one
data record.

3. MPC-Based Histogram Aggregation: The third step is for
the computation agents in the Libertas architecture to run
the MPC code. This involves reading shares of the in-
dividual histogram representations from the clients and
computing the aggregate histograms through an addition
of arrays / matrices operation. No agent receives the re-
sult (aggregate histograms) yet.

4. Differentially-Private Synthetic Data Generation: The
next step is to execute the remaining steps of respec-
tive differentially-private synthetic data generation algo-
rithm. We do not perform this step in MPC; more details
about this step as in the following text.

Separating Noise Addition and Data Generation
from MPC
We have proposed that separating the preliminary, aggre-
gating histogram step (in MPC) from the subsequent steps
could improve the scalability of privacy friendly synthetic
data generation in decentralised contexts. For example, de-
pending on the synthetic data generation algorithm, these
subsequent steps may involve adding noise to the his-
tograms using the appropriate mechanism based on the
designated privacy budget to ensure the measurements are
differentially-private and then run a generation algorithm
such as PGM on the measurements that can be released to
the MPC app user. Similarly, in the case of MWEM algo-
rithm, this involves running the iterative algorithm where
measure and generate steps are more interweaved. Note that
we do not modify the steps of the algorithm or propose a new

algorithm. The aggregate histograms that are needed as in-
put in the synthetic data generation algorithm are computed
from the individual data points using MPC. This aggregated
histogram is then used by the algorithm but the algorithm
itself is not implemented in MPC (unlike (Zhao et al. 2023;
Pereira et al. 2022)). We therefore inherit the differential-
privacy privacy guarantees from the respective algorithm for
the final output. Let us now address an intermediate vulner-
ability that is introduced as a result of this separation from
MPC and how we alleviate it.

In particular, between steps 3) and 4), we need to trust a
computation agent with the aggregated histogram, who then
runs a differentially-private synthetic data algorithm. If this
agent is compromised, an adversary can access non-private
aggregated histogram.

What the adversary could learn about individuals par-
ticipating in the data analysis depends on the nature of
the dataset. For example, in non-homogeneous populations,
identifiable outliers in the histogram could compromise the
privacy of participants from certain subgroups. This is of
particular concern if it involves protected characteristics or
individuals from marginalised groups. To mitigate against
these attacks, we use the following methods to strengthen
the privacy assurance of our approach.

1. Random Selection In a naive implementation of MPC,
all parties receive the same output, i.e. the result of evalu-
ating the arithmetic circuit. However, it is possible for dif-
ferent parties to receive different outputs or no output at all.
We delegate the subsequent tasks to a randomly chosen com-
putation party instead, i.e. only the chosen party receives the
aggregated histogram output. The random selection is part of
the MPC circuit as a joint random number generation proce-
dure and hence adherence is enforced by the MPC protocol
used (and with the underlying security parameters as dis-
cussed in Appendix A).

Random selection reduces the chance of a malicious party
getting the non-private aggregated histogram. Furthermore,
it is impossible for the adversary to cheat the random number
generation through its choice of inputs. It is worth recalling
that MPC still protects the input data (individual records)
as long as the protocol security assumptions hold, thereby
limiting the attack surface.

2. Trusted Execution Environment A Trusted Execution
Environment (TEE) (Jauernig, Sadeghi, and Stapf 2020; Li
et al. 2023) is a secure area in the main processor of a device;
examples of TEEs include Intel SGX (Costan and Devadas
2016) or AMD SEV (AMD 2020). With appropriate com-
plementary mechanisms, TEEs are a promising approach
to maintaining the confidentiality and integrity of code and
data located inside them, without relying on a trusted oper-
ating system. Therefore, many cloud service providers such
as Azure offer TEEs based “confidential computing” feature
for sensitive use-cases.

The MPC histogram generation proceeds as before. Ad-
ditionally, a computation agent is nominated to serve as the
enclave agent. The enclave agent can be nominated using
the MPC based random selection as discussed above.

Before dispatching the code for the remaining synthetic



data generation steps to the enclave agent, the encryption
party optionally verifies the identity of the enclave through
remote attestation. Remote attestation, which allows a re-
mote party to verify the contents of the program that is run-
ning in the enclave with a certificate generated by the un-
derlying hardware. After the MPC has concluded, the out-
put (aggregated non-private histogram) is sent to the en-
clave via a secure channel for executing rest of the steps of
differentially-private synthetic data generation process. Typ-
ically an extension of SSL/TLS which forces the enclave
endpoint to incorporate its attestation proof with its certifi-
cate serves as the channel (Knauth et al. 2018).

We provide an overview of our approach in Figure 1, an
adapted version of the one presented in Zhao et al. (2023).

Encryption agents convert raw data 
into histogram representation and 
create secret shares for MPC.

1. Computation agents aggregate histograms 
using MPC, but no agent receives the result 
(aggregated histograms) yet.

2. Using MPC, agents also nominate a random 
agent that acts as an enclave agent.

3. After remote attestation, aggregated 
histograms are sent to this enclave agent 
(Intel SGX), where rest of the steps of 
synthetic data generation take place.

Figure 1: For generating differentially-private synthetic data
from personal data stored in Solid pods, we adapt the Liber-
tas architecture such that MPC is used for histogram aggre-
gation and nominating a random enclave/TEE agent only.
Subsequent steps of synthetic data generation are executed
inside the TEE (Intel SGX) after remote attestation.

Discussion Compared to MPC, the trust relationship
needed in TEEs is that data providers trust the hardware
manufacturer. We note that while setting up an enclave all
the dependencies must be loaded into the enclave file sys-
tem ahead of its creation. This limits the libraries that the
code running in the enclave can access. Thus for conve-
nience, the services offered by the enclave agent is baked
into the architecture, at the cost of versatility. Furthermore,
SGX is vulnerable to side channel attacks (Nilsson, Bideh,
and Brorsson 2020). However, since the first step in our solu-
tion uses MPC, we not only keep the solution decentralised
but the risks due to SGX’s vulnerabilities are also signifi-
cantly reduced. Thus, in order to utilise the TEEs within the
Liberetas architecture in a principled manner, we separate
the computation steps in the algorithm into steps that should
be executed in MPC and TEE while balancing the privacy,
decentralisation and scalability trade-offs.

Assumptions The proposed approach inherits threat
model assumptions from parent technologies and architec-
tures including Solid (Sambra et al. 2016b; Mansour et al.
2016), MPC (Evans et al. 2018), MP-SPDZ (Keller 2020),
Libertas (Zhao et al. 2023), differential-privacy (Dwork,

Roth et al. 2014) and Intel SGX (Nilsson, Bideh, and Brors-
son 2020). The assumptions include but are not limited to,
encryption agents and computation agents in the Libertas ar-
chitecture behaving as specified in the trust preferences of
the data providers, and appropriate MPC protocol being used
for honest majority or dishonest majority setting.

5 Empirical Evaluation
We implemented the above approach and performed com-
prehensive experiments to understand the strengths and lim-
itations of the proposed approach. In this section, we will
first discuss implementation related details, following by ex-
perimental setup and the results.

Implementation Details
Apart from the Solid development framework and the Liber-
tas implementation (Zhao et al. 2023)), we use the following
in our open-source implementation. 2

MP-SPDZ MP-SPDZ is a framework for benchmarking
multi-party computation tasks (Keller 2020). Similar to
(Zhao et al. 2023), we use MP-SPDZ in our experiments
because it enables easy testing of different protocols from a
single high level program and for its comprehensive metrics.

Zhao et al. (2023) implemented the encryption agents us-
ing the client mechanism of the MP-SPDZ framework for
secret sharing with players, which in turn is based on the
SPDZ protocol (Damgård et al. 2016). We follow the same
and we also use it for the enclave agent. Although it does not
send (unlike encryption agents) any input to the computation
parties, we use the client mechanism of MP-SPDZ to allow
it to receive the aggregated histogram.

Gramine Gramine is a library OS that is used to run un-
modified Linux applications (e.g. the Python interpreter) in
an SGX enclave (Tsai, Porter, and Vij 2017). While the In-
tel SGX SDK exposes a low-level C/C++ interface for writ-
ing enclave applications, we use Gramine for portability and
faster development cycles. We provide a manifest file with
the associated source code to configure the application envi-
ronment and isolation policies.

Marginal-Based Inference (MBI) The Marginal-Based
Inference (MBI) library exposes procedures that take
as input noisy measurements (e.g. differentially private
marginals) and generates synthetic data (McKenna, Miklau,
and Sheldon 2021). While selection of the right queries is
an important question (McKenna et al. 2022), we restrict at-
tention to investigating the scalability and MBI provides a
generic interface with a range of implemented algorithms
for comparison. As with MP-SPDZ, we use MBI for easy
testing of different generation algorithms and comparability
of benchmarking results.

2Source code as well as all the raw data from experimental
results can be reviewed anonymously at https://tinyurl.com/aies-
269/. The link will be replaced by an open-source github link in
the camera-ready version of the paper.



Experimental Setting
Setup Our computational and encryption agents were de-
ployed on a single server connected over a virtual LAN. This
was to focus on the computational cost of the approaches
while controlling for network factors such as latency and
bandwidth that would affect the scalability. We acknowledge
that these are important as the agents may be connected over
a WAN, hence we report the size of data transfers in each
computation.

We deploy 3 computation agent servers and 2 encryption
agent servers, unless stated otherwise. This is because for
honest majority protocols, 3 is the minimum number of play-
ers. Furthermore, Zhao et al. (2023) show that in a delegated-
decentralised setting, MPCs with fewer players scale better.
Hence, any improvement our approach offers in this setting
should also translate to cases with greater number of players.

Platform The experiments were conducted on an Azure
DV4 VM running on an Intel Xeon Platinum 8370C
(2.8GHz) with 4 vCPUs and 32 GB RAM. This architec-
ture includes support for the SGX instruction set and this
VM series comes with SGX enabled in the BIOS. A distri-
bution with Linux kernel of version at least 5.11 is used as it
includes support for SGX drivers (we use Ubuntu 22.04).

We increased the maximum number of open files to 65536
as we otherwise quickly run out of file descriptor resources
during our experiments. Nevertheless, in certain (e.g. dis-
honest majority) settings we encounter resource limitations
and hence must limit the scope of our experiment to fewer
data providers.

Benchmark Datasets For evaluating the proposed ap-
proach, we simulate different settings in which data
providers have data records stored in their Solid pods. For
the first part of our experiments, we use 1-dimensional simu-
lated data records. Please note the distinction between ‘sim-
ulated data’ and ‘synthetic data’. In our paper, synthetic data
is the data produced by a differentially-private generation al-
gorithm that takes real data from data providers as input. In
the first part of our experiments, we simulate this real data
using ‘simulated data’, which would be the input of syn-
thetic data generation algorithm. The data was uniformly
sampled from a range of 0 to 20. There are two scenarios
that we consider here. The first is the fixed total data setting
where we fix the total number of data records at 10000 and
evenly distribute it among the data providers. The second is
the variable total data setting where we fix the number of
data records per data provider at 100. This latter situation
gives us between 1000 and 100000 data records (the number
of data providers range from 10 to 1000).

For the second part of experiments, where the perfor-
mance of marginal-based generation algorithms under our
approach is benchmarked, we use real-world datasets that
are common benchmarks in the synthetic data generation
literature. In particular, we rely on the Adult (Kohavi et al.
1996) and the Titanic (Encyclopedia Titanica 2023) datasets.
There are a few preprocessing steps that we undertake before
storing the data records in Solid Pods. Since many gener-
ation algorithms including MWEM assume discrete-valued

data, we remove certain continuous values attributes and dis-
cretise others. We further remove data records with missing
values.

Table 1: A summary of the real-world datasets used in the
experiments (after preprocessing). Total domain size was
rounded to one significant figure.

Dataset Records Dimensions
Min-
Max
Domains

Total
Domain
Size

Adult 48842 14 2-100 4× 1017

Titanic 713 7 2-90 2× 105

We see in Table 1 a summary of the datasets after pre-
processing. Both real-world datasets have much larger do-
mains than the simulated data. As we shall see further in
this section, the proposed approach scales efficiently in all
these cases.

Since the number of instances in Adult (48842) is much
larger than the maximum number of data providers we con-
sider (1000), one can consider two different data distribution
strategies, much akin to the difference between the variable
total and fixed total datasets described before. In the first,
each data provider receives a single instance from the Adult
dataset. This is more in line with the traditional thinking of a
Pod as being controlled by and holding a single individual’s
data. In the second, the records from Adult are distributed
roughly equally among the different data providers.

Client Binning We use a pre-specified number of bins in
histogram for inducing a manageable dimensionality. This
conversion of individual data points to the bin format can
be done either in the encryption server via client code or in
the computation server via MPC code. The binning strategy
is pre-agreed through client code. Results from (Zhao et al.
2023) find that performing binning in the client code re-
sults in a significant performance gain. We use this so-called
client-binning optimisation in all our experiments involving
MWEM.

Reported Metrics
1. Time: The total time taken to complete a given MPC

computation, including any setup time, for e.g., estab-
lishing connections, fetching data, shares of data being
received from the encryption server clients etc. While re-
porting this metric for our approach, we add the time for
performing the measure and generate steps in SGX.

2. Communication Rounds: The number of rounds of
communication required for the players to finish a given
computation. This differs from the number of communi-
cations which is the number of rounds times the number
of players (for the protocols we consider, may differ in
other protocols).

3. Local Data: The amount of data being transmitted by
a single player. Usually this value does not vary greatly
between different players for the MPC protocols that we
use. We report the local data measured at player 0 for
consistency.



4. Global Data: The total amount of data exchanged during
all communications between players over the course of
the MPC computation.

Communication rounds, local and global data are standard
metrics provided by the MP-SPDZ framework itself; we did
not measure these metrics using a separate code or tool.

Empirical Analysis
We now present results from experiments, comparing our
proposed hybrid approach using MPC and SGX versus MPC
only, for MWEM across various simulated datasets and
MPC protocols with different adversarial assumptions. The
MPC only implementation is taken from Libertas (Zhao
et al. 2023), while the MPC and SGX implementation is
ours.

We first discuss the results obtained on the simulated data
and MASCOT protocol. We run the MASCOT protocol to
simulate a dishonest majority setting (Keller, Orsini, and
Scholl 2016).

Figure 2 shows the results for the setting in which we fix
the total number of data points among all data providers at
10000 and distribute them equally among them. MWEM is
run with the client-binning optimisation using a fixed num-
ber of bins (10), epsilon value 2 (ε = 2), and 30 iterations
(T = 30). The reported time includes the time in com-
munication setup. We observe that running MWEM with
our approach takes less than 500 seconds, while MWEM
with MPC only takes almost 3000 seconds even for just
10 data providers. While the computation time in both set-
tings grows linearly with data providers, the faster growth
in the MPC+TEE setting can be attributed to initial setup
time where shares are received from the encryption agents,
which increases with more data providers and may dominate
a smaller computation time. Zhao et al. (2023) also discuss
computation time and setup times separately and show that
computation time indeed grows much slowly than the to-
tal time (computation + setup time). We also observed that
the behavior w.r.t. local and global data may vary with the
implementation of the MPC program but generally, grows
slowly with the number of data providers. We zoom into the
graphs by showing one observation point in Table 2. In the
MPC only setting, the amount of global data exchanged to
complete the computation is nearly 360 GB, compared to
the much more manageable size of 357 MB in our approach.
This is an orders of magnitude improvement.

Table 2: MASCOT with 10000 data itemso divided among
100 data providers. Time is rounded to 0.01; ± indicates
standard deviation. MWEM on fixed total dataset (simu-
lated) with 10 bins, ε = 2, T = 30.

Approach Time(s) Rounds Local
Data(MB)

Global
Data(MB)

MPC
Only

2860.68±
9.29

325796 119936 359514

MPC+TEE 73.65 ±
14.96

208 118.98 356.87
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Figure 2: Comparison of MPC Only and MPC+TEE Approaches
[MWEM; MASCOT protocol, fixed total data (simulated) i.e.
10000 data points divided equally among data providers; 10 bins,
ε = 2, T = 30.]

Figure 3 show the corresponding results for the set-
ting when we fix the total number of data points per data
providers at 100. Figure 2 and 3 show very similar results
due to the fact that the number of data points contributed
by data provider does not matter as much in our implemen-
tation because the client code converts raw data from data
providers into histogram representation and the rest of the
process only deals with the histogram representation. There-
fore, the additional cost is mostly limited to the process of
converting raw data into histogram representations and all
further dominating costs are nearly independent of the num-
ber of data points.

We next draw attention to Figure 4 where we show the
time taken with the number of iterations in the MWEM al-
gorithm, an important hyper-parameter in any iterative al-
gorithm. Clearly, time increases at a much faster rate in the
MPC only approach compared to the hybrid MPC+TEE ap-
proach. The reason for similarity in the fixed data and vari-
able data setting is the same as discussed previously.

In Figure 5, we have plotted the error in MWEM, mea-
sured as the distance between the generated data distribu-
tion and the actual data distribution, against the number of
iterations. The code was run without MPC or SGX as it
does not affect the measured value. We use a dataset with
a skewed distribution for this experiment. This is because
we initialise MWEM with a uniform distribution and thus a
skewed dataset would require more iterations for it to con-
verge. We observe that the error continues to fall even at
140 iterations where it is around 0.1, suggesting that there
is room for further convergence. This is an important prop-
erty because in the MPC only setting, we found even at
a modest 30 iterations, the amount of time approached 50
minutes and the amount of global data exchanged was 360
GB. Our results suggest that running it for further iterations
would be impractical. Indeed if we double the number of



0 100 200 300 400 500
Number of Data Providers

0

1000

2000

3000
Ti

m
e 

(s
)

MPC+TEE
MPC Only

(a) Time

0 100 200 300 400 500
Number of Data Providers

0

100000

200000

300000

Co
m

m
un

ic
at

io
n 

Ro
un

ds

MPC+TEE
MPC Only

(b) Communication Rounds

0 100 200 300 400 500
Number of Data Providers

0
20000
40000
60000
80000

100000
120000

Lo
ca

l D
at

a 
(M

B)

MPC+TEE
MPC Only

(c) Local Data

0 100 200 300 400 500
Number of Data Providers

0

100000

200000

300000

400000

G
lo

ba
l D

at
a 

(M
B)

MPC+TEE
MPC Only

(d) Global Data

Figure 3: Comparison of MPC Only and MPC+TEE Approaches
[MWEM; MASCOT protocol, variable total data (simulated) i.e.
100 data points per provider; 10 bins, ε = 2, T = 30.]
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i.e. 10000 data points divided
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Figure 4: Comparison of time in MPC Only and MPC+TEE Ap-
proaches, for different number of iterations of MWEM. MASCOT
protocol, 100 data providers, 10 bins, ε = 2, T = 100.

bins to 20, as we do in figure on the right, we notice the
convergence is slower. The appropriate number of bins in
a practical implementation would depend on the number of
attributes and the domain size but it is reasonable to expect
that real world datasets, such as Adults and Titanic that we
use in the next section, would preclude us from using a MPC
only approach.
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Figure 5: MWEM error i.e. difference between true and generated
distribution, with different number of iterations of the algorithm on
a skewed dataset using 10 bins and ε = 2.

So far we have discussed results obtained using the MAS-
COT protocol (simulating dishonest majority setting). We
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Figure 6: Comparison of MPC Only and MPC+TEE Approaches
[MWEM; SHAMIR protocol, fixed total data (simulated) i.e.
10000 data points divided equally among data provoiders; 10 bins,
ε = 2, T = 100.]

now report the results for the Shamir protocol to simulate an
honest majority setting. Results are shown in Figures 6 and
7 for fixed total data and variable total data settings using
the simulated dataset. Being a more efficient protocol due to
relaxed adversarial assumptions, we see some clear differ-
ences in the behaviour of the metrics under both approaches.
Consequently we note that values for time, global and local
data are significantly lower than in Mascot. This is despite
the fact that the number of communication rounds (around
190000) is not that far off from the rounds in the Mascot set-
ting (approximately 320000), indicating that communication
is noticeably cheaper in an honest majority setting. We also
observe that the time for both MPC only and MPC+TEE
grows linearly at roughly the same rate in this case.

We observe in figure 8 that time taken grows much slower
in the hybrid MPC+TEE approach, with the number of itera-
tions of the MWEM algorithm. A similar trend, although not
plotted, was observed for local and global data as well, with
global data exceeding 1 GB at 140 iterations in the MPC
only approach.

Benchmarks on Real Datasets
Having carefully analysed the difference between the
MPC only and the MPC+TEE approaches using sim-
ulated datasets, we now benchmark the MPC+TEE
approach using real-world datasets. In particular, we
benchmark the performance of different synthetic
data generation algorithms such as PGM and Lo-
cal Consistency (mbi.FactoredInference and
mbi.LocalInference) in the proposed MPC+TEE
approach with common datasets like Adults and Titanic.
In the figures in this section, the results of the MPC+TEE
approach will also be more clearly visible since we will not
include the MPC only approach which would increase the
scale of Y-axis in the figures.
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Figure 7: Comparison of MPC Only and MPC+TEE Approaches
[MWEM; SHAMIR protocol, variable total data (simulated) i.e.
100 data points per provider; 10 bins, ε = 2, T = 100.]
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(a) Fixed total data (simulated)
i.e. 10000 data points divided
among 100 data providers.
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Figure 8: Comparison of time in MPC Only and MPC+TEE Ap-
proaches, for different number of iterations of MWEM. SHAMIR
protocol, 100 data providers, 10 bins, ε = 2, T = 100.

We first benchmark the performance of the MPC+TEE
approach with the PGM algorithm on 10 two-dimensional
marginals of the Adult dataset using the Shamir protocol.
The reason we did not consider a larger number of marginals
is because of memory limitations we encountered on our
compute while running PGM rather than the scalability of
the approach to real world high-dimensional datasets. Each
data provider represented a single record from Adults. PGM
was run for 30 iterations with no change to the other hyper-
parameters. The results are shown in Figure 9. Despite the
large number of attributes (14), many of which have a large
domain (maximum 100), our approach keeps the compu-
tation time at less than 1400 seconds even with 1000 data
providers. While the amount of data exchanged grows lin-
early, it still remains at a manageable 1400 MB global data
for 1000 providers.

We also benchmark the performance of the MPC+TEE
approach with PGM on the Titanic dataset using the Shamir
protocol. We consider all two-dimensional marginals over
the 7 attributes resulting in 21 histograms in total. Again
PGM is run for 30 iterations. Each data provider repre-
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Figure 9: Performance of the MPC+TEE approach using PGM
and Local Consistency generation algorithms (30 iterations); Adult
dataset; SHAMIR protocol, one data point per provider.]

sents a single record from Titanic. Results are shown in Fig-
ure 10. Despite considering a greater number of marginals
than Adult, we see that it scales better on Titanic across all
metrics. This can be attributed to the larger domain size of
attributes. As seen in figure 10a the time taken for 500 data
providers is around 210 seconds, compared to over 660 sec-
onds in 9a for Adult.

Figures 9 and 10 also show the performance using Local
Consistency method. While the differences are not signifi-
cant to be visible in the figures, we observed that on both
the Adult and the distributed Adult dataset, Local Consis-
tency based generation takes approximately 30 seconds less
time than PGM. On the other hand in the Titanic dataset, Lo-
cal Consistency based inference takes about 1-1.5 seconds
longer than PGM. We also observed, for example, that Lo-
cal Consistency does not run into the same memory limita-
tions that we encountered when considering more marginals
in PGM. The communication rounds, local data and global
data does not vary between PGM and Local Consistency in
our experiments due to our implementation (steps in MPC
do not differ).

Discussion
One of the takeaways from the results presented above is
that the MPC only approach is very costly compared to the
proposed MPC+TEE approach, particularly in the dishon-
est majority settings. Dishonest majority setting is important
because if the data providers do not trust common compu-
tation agents, a dishonest majority protocol like MASCOT
is unavoidable. The difference in cost is significant even in
the honest majority setting. While all experiments were con-
ducted in a LAN setting, a truly decentralised implementa-
tion of Solid+MPC would be over the internet where such
costs are major concerns.

The other takeaway is that the proposed approach is ro-
bust to a range of parameters beyond just the number of data
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Figure 10: Performance of the MPC+TEE approach using PGM
and Local Consistency generation algorithms (30 iterations); Ti-
tanic dataset; SHAMIR protocol, one data point per provider.]

providers. We can see from Table 1 that the domain size of
the Adult dataset is 2 × 1012 times larger than that of Ti-
tanic. When considering just the attributes that are consid-
ered in marginal queries, the domain size of Adult comes
at 8.5 × 106, still 40 times that of Titanic. However, when
we look at the maximum time in our proposed MPC+TEE
approach and PGM, Adult is only just over 6 times that of
Titanic. Another axis of comparison is to look at the size of
the histograms rather than the domain of attributes that are
queried. For the marginal queries we considered, this gives
us 14739 for Adult vs 3285 for Titanic. From this we ob-
serve a linear growth in metrics as the histogram size in-
creases. Considering that in large datasets the number of
low-dimensional histograms is likely to be much smaller
than the number of data providers, the number of marginals
considered does not appear to be a bottleneck. Indeed, as we
noted previously, it was the PGM generation algorithm that
prevented us from considering more marginals. This is im-
portant because training on a greater number of marginals
increases the versatility of the synthetic dataset by giving
accurate results on a wider range of tasks.

6 Related Work
Other than the background covered in Section 3, we note
two other lines of related work. The first is local differen-
tial privacy methods (Zhao et al. 2020; Cormode et al. 2018;
Wang et al. 2019; Qin et al. 2017; Ren et al. 2018). The ac-
curacy of query results in the local model is typically orders
of magnitude lower for the same privacy cost and the same
query, compared to central differential privacy (Dwork, Roth
et al. 2014). On the other hand, we use central differential
privacy using other privacy-enhancing technologies such as
MPC and TEE and therefore, the privacy-utility tradeoff is
the same as in central model. We show that one can limit
MPC use to strictly necessary for addressing the scalability

challenge. The second line of work either proposes to use
blockchains for decentralised data and access control or fo-
cuses on synthetic data generation process or other compu-
tations from distributed data. Examples from this very large
body of work include (Zyskind, Nathan, and Pentland 2015;
Zyskind, Nathan et al. 2015; Golob et al. 2023; Pereira et al.
2022; Veeraragavan and Nygård 2023; Hynes et al. 2018).
The weaknesses of blockchains based approaches include 1)
for personal data, blockchains are considered too transpar-
ent. Off-chain hosting of data, which is often suggested as
an alternative to address this concern, does not really solve
the problem but merely delegates it. 2) the guarantees pro-
vided by blockchains such as immutability are not required
(and may even be undesired) in many use-cases and come
with huge costs. On the other hand, we use Solid (a personal
data store) which provides everything we need and is based
on open Web protocols.

7 Conclusions and Future Work

In this paper, we advance state-of-the-art in contributor-
centric approach to responsible synthetic data generation.
Personal data stores such as Solid provide individuals ulti-
mate control over their data. Users keep their data in Pods
(Personal Online Datastores). The apps and services that
they use (for e.g. various Web based applications, online
social platforms, health service applications etc), read and
write data to the user’s Pod. A Pod provides granular control
to users over who can access which data. In the proposed
approach for synthetic data generation, the real data remains
with individuals in their Solid pods. Individuals use Solid’s
access control mechanism to decide whether they want to
participate in the synthetic data generation process (for ex-
ample, by taking into account what is the purpose of syn-
thetic data generation and which real data is required as in-
put). We show how participating individuals can then use
secure multi-party computation (MPC) and Intel SGX for
running differentially-private synthetic data generation algo-
rithms in a scalable way. Our comprehensive experiments in
different experimental settings support our thesis.

In future work, it would be interesting to explore other
personal data stores such as openPDS and Databox with
different capabilities than Solid. We expect to see similar
trends on those platforms under similar experiments, but
there could be interesting variations in the cause of perfor-
mance bottlenecks and worth investigating. Similarly there
are other frameworks for MPC, many derived from MP-
SPDZ and some independent (Duan 2020). While commu-
nication costs impose a natural challenge, more efficient im-
plementations of the underlying protocols could also con-
tribute to more scalable synthetic data generation. Finally,
we have focused on tabular data in this work whereas Solid
also has support for unstructured data such as text and im-
ages. There has been much success in private synthetic data
generation of images using GANs and diffusion models,
such as PATE-GAN (Jordon, Yoon, and Van Der Schaar
2018). An interesting direction for future inquiry would be
to improve their scalability in a decentralised setting.
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A Appendix: Expanded Background
Personal Data Stores
In response to increasing centralisation of data and loss of
user autonomy, several decentralised data architectures have
been proposed that aim to give users more control over their



personal data. One such approach that has gained consider-
able traction is Personal Data Stores (PDS) (Sambra et al.
2016b; Mansour et al. 2016).

Under this decentralised data paradigm, users store their
data in a Pod (Personal Online Datastore). A Pod provides
granular control to users over who can access which data as
well as secure transmission of data for authorised requests.
The apps and services that they use (for e.g. various Web
based applications, online social platforms, health service
applications etc), also read and write data to the user’s Pod.
Users can transfer their data from one Pod service provider
to another, including the option to self host. This unlocks a
whole new paradigm for app design based on interoperabil-
ity, a key design aspect (Linked Data) of Solid. The decou-
pling of data and apps reduces the need for expensive data
collection across platforms, thereby benefiting developers as
well. Pods support both structured and unstructured data.

There are several PDS projects ranging from purely aca-
demic implementations to those with commercial offerings,
among them openPDS (De Montjoye et al. 2014), Databox
(Mortier et al. 2016), and Solid (Mansour et al. 2016). These
vary in their protocol design and the demands they place
on the features a Pod must support. We focus on Solid be-
cause of its open design based on existing Web standards
and growing adoption.

Solid
The Solid specification produced by the W3C Solid Com-
munity Group is the authoritative set of guidelines on the
Solid protocol (Group 2023a). Here we give a brief overview
with a focus on what is necessary for a client app developer.

WebID A WebID (Andrei Sambra, Henry Story, and
Tim Berners-Lee 2014) is represented as an Interna-
tionalised Resource Identifier (IRI) used to identify
a specific agent (person or organisation) in Solid.
An example of what a WebID might appear as is
https://eg.pod.provider/profile/card#me.
To share data with someone else, the user who controls the
Pod must associate sharing preferences of that resource with
the WebID of the party with which they wish to share their
data with. The WebID is provided by an Identity Provider
and provides the authentication function. Most providers use
the OpenID Connect protocol (OIDC) to prove ownership
of a WebID. Authorisation is handled by the Web Access
Control (WAC) system based on an Access Control List
model for decentralised use cases (Group 2023b). Anyone
or anything that accesses data in a Solid Pod uses a unique
ID, authenticated by a decentralised extension of OpenID
Connect. Solid’s access control system (WAC) uses these
IDs to determine whether a person or application has access
to a resource in a Pod.

Reading/Writing Resources Resources may be struc-
tured (RDF data (W3C 2014)) or unstructured files. Further
they may also be container resources, which are analogous
to directories in a file system. Although the terminology may
vary by Pod providers, it is generally possible for a user to
grant the following permissions to a specific resource, en-
abling authorised client apps to interact with the data. As

described above, read, write and modify permission may be
granted to an associated WebID. It is also possible to grant
public access.

Resources in Solid are assigned an IRI or a Uniform Re-
source Identifier (URI). While it is possible for clients to
add, delete and modify resources in a Pod using primitive
HTTP requests described in the specification, one typically
uses a client library such as the Inrupt JavaScript library to
perform these actions (Inrupt 2023).

While Solid provides users control of their data and al-
lows Web applications to read/write based on user prefer-
ences, it leaves open a challenging problem. When compu-
tations have to be performed over the data of multiple users,
Solid does not specify how this can be done. Solid Pods also
do not have any local computation capability in the current
specification. This problem has recently been addressed by
the Libertas architecture proposed by Zhao et al. (2023). Be-
fore discussing the Libertas architecture, we provide a brief
introduction to Secure Multi-Party Computation (MPC).

Secure Multi-Party Computation (MPC)
Secure multi-party computation (MPC) (Evans et al. 2018)
is a set of cryptographic protocols for ensuring that one or
more parties can participate in the decentralised computa-
tion of a function over some privately held inputs such that
no party learns anything about the private input of another
party. The only information that can be inferred about the
private input is whatever can be inferred from the output of
the function alone. 3 More formally, given n parties P1, ...,
Pn, their corresponding inputs x1, ..., xn and a function f ,
an MPC protocol computes y = f(x1, ..., xn) without re-
vealing input xi to party Pj where i 6= j.

In the past few decades, there has been significant re-
search on the development of efficient MPC protocols.
The cryptographic primitives that are typically used to im-
plement MPC are secret sharing schemes (Shamir 1979),
garbled circuits (Yao 1986), and oblivious transfer (Rabin
2005). We focus on secret sharing, discussed as follows.

Shamir Secret Sharing A secret sharing scheme is a
method for a dealer to share a secret s among n parties so
that any subset of t + 1 or more parties can reconstruct the
secret but fewer parties can learn nothing about the secret.
Such a scheme is called a (t + 1)-out-of-n-threshold se-
cret sharing scheme. Shamir’s secret sharing (Shamir 1979)
is an example of secret sharing methods. Shamir provides
information-theoretic security, i.e. it is secure against a com-
putationally unbounded adversary as long as the threshold
has not been reached.

MPC protocols also differ in their security assumptions
regarding the adversary, discussed as follows

Security Parameters A party is said to be corrupted if it
is under the control of an adversary who wishes to learn the
private input of a participant. Corrupted parties may collude

3Differential-privacy, to be discussed next, addresses this lim-
itation and thus, MPC and differential privacy are complementary
privacy mechanisms.



at any stage of the MPC computation. The two main param-
eters that define the power of the adversary are: adversarial
behaviour and number of corrupted parties. There are three
main types of adversarial behaviours considered in the lit-
erature: 1) semi-honest or passive adversaries, 2) malicious
or active adversaries, and 3) covert adversaries. The adver-
saries differ in whether and how they deviate from the proto-
col. Broadly, the number of corrupted parties is categorised
as honest majority and dishonest majority.

Shamir Protocol for MPC Most honest majority pro-
tocols for MPC such as Shamir involve representing the
function we wish to compute as an arithmetic (or some-
times Boolean) circuit (Lindell 2020). All parties begin with
this circuit and further can communicate securely with each
other. An arithmetic circuit is composed from addition and
multiplication gates. MPC consists of following steps. In the
first input sharing step, each party shares its inputs with the
other parties using Shamir secret sharing. In the second cir-
cuit evaluation step, the parties evaluate the gates one at a
time from the input to the output. We want to maintain the
invariant that for each gate, the evaluated output is a (t+ 1)-
out-of-n share of the true value of that gate. In the third out-
put reconstruction step, the parties now possess shares of
the output which they may reconstruct it by sending their
shares to each other and interpolating. Note that it is possi-
ble for different parties to obtain different or even no output
by only sending shares to relevant agreed parties.

Libertas Architecture by Zhao et al. (2023)
Libertas architecture, proposed by Zhao et al. (2023), ex-
tends Solid (while adhering to the Solid protocol) to enable
performing computations using MPC on decentralised data
held in individuals’ Pods. Apart from the data provider (Pod
owner), they introduce three new roles, that of the MPC app,
the encryption agent, and the computation agent. We discuss
them briefly below and an overview is shown in Figure 11.
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Figure 11: Libertas Architecture for integrating Solid &
MPC (Zhao et al. 2023)

Data Provider Before the MPC computation is initiated,
the data providers must create a preference file which lists
the computation and encryption agents that each of them are
willing to delegate the computation and encryption tasks.
Further, this must be made readable to the MPC App(s)
and/or App users via their associated WebIDs. The trusted
encryption agents are granted read access to the relevant

data. This is all that is expected of the data provider, who
need not be active during subsequent computations.

MPC App The user of the MPC App provides a resource
description, containing a list of data resources and the as-
sociated preferences of data providers as URIs. The app
reads preference files, determines the encryption and com-
putation agents that match the delegation preferences of data
providers and sends out the corresponding tasks. It then
waits for the computation to finish before receiving the re-
sults from the relevant agent.

Encryption Agent The encryption task instructs the en-
cryption agent where and how to read the data and how
to send secret shares of the data to the players (computa-
tion agents). The task is sent as raw source code, allow-
ing for verification before compilation/execution to protect
against malicious actors. This is implemented using the
client mechanism of the MP-SPDZ framework for secret
sharing with players, which in turn is based on the SPDZ
protocol (Damgård et al. 2016).

Computation Agent The computation agents execute the
program on the secret shared inputs based on the protocol
of choice. One of the strengths of the Libertas architecture
is that both agents are reusable and generic in the computa-
tion service they provide. We will take advantage of this in
our proposed solution by proposing additional roles for the
agents to strengthen the privacy guarantees of our synthetic
data generation approach.

Libertas addresses three main limitations of Solid. First,
a user can allow an agent, that has not been granted ac-
cess to some data directly, to utilise the data as input in a
multiparty computation procedure, without compromising
the user privacy. Second, it overcomes the limitations aris-
ing due to the lack of computation capability in Solid Pods,
by a mechanism to delegate participation in the joint com-
putation while users retain control. Third, under a direct-
decentralised model where data providers are also the pro-
tocol players, MPC scales poorly as the number of players
grow. Conversely, the delegated-decentralised model used in
Libertas, with a smaller number of agents acting as play-
ers, offers significantly better scalability. But fundamentally,
costs due to MPC protocols remain challenging.

Differential-Privacy
Differential privacy (Dwork et al. 2006) is a rigorous math-
ematical definition of privacy that has become the de facto
standard for output privacy. Many tech companies such as
Apple, Google (Erlingsson, Pihur, and Korolova 2014), and
Microsoft (Ding, Kulkarni, and Yekhanin 2017) have built
privacy-aware systems that use differential privacy. National
Statistical Offices too have begun releasing censuses that
incorporate differential privacy. Differential privacy bounds
the impact any one individual can have on the output of an
algorithm. More formally, a randomised mechanism M :
D → R satisfies (ε, δ)-differential privacy (DP) if for all
neighboring (differing on one element) datasets D,D′ ∈ D
and all subsets of possible outputs S ⊆ R,



Pr[M(D) ∈ S] ≤ exp(ε)Pr[M(D′) ∈ S] + δ

Synthetic Data Generation Algorithms
Any dataset release (including synthetic data) that mean-
ingfully preserves statistics of the original dataset will re-
sult in a privacy loss. Thus, there exists a privacy-utility
trade-off. We are interested in synthetic data generation
algorithms with differential-privacy guarantees for output
privacy. There exists several algorithms for differentially-
private synthetic data generation. In this paper, we focus on
marginal-based approaches to synthetic data generation that
have achieved considerable success in practice. Marginal-
based algorithms won the 2018 NIST Differential Privacy
Synthetic Data Competition, for instance, and performed
competitively in other iterations of the contest (McKenna,
Miklau, and Sheldon 2021).

A marginal is a key statistic that captures low dimensional
structure in a high dimensional data distribution (McKenna,
Miklau, and Sheldon 2021). Let a dataset D consist of
N records and each record contain sensitive information
about one individual. Let the set of d attributes be A =
{A1, ..., Ad} where attribute Ai has domain Ωi. We assume
that the domain Ωi is finite, |Ωi| = ni. We denote the set of
all possible datasets by D. A marginal for a set of attributes
C ⊆ A is a histogram that counts the number of occurrences
of each combination of values in C. We use the terms his-
togram and marginal interchangeably.

Further, we focus on workload aware algorithms. A work-
load is a collection of queries that a synthetic dataset must
preserve well. These are the queries that downstream users
of the synthetic dataset might be interested in answering.

Select-Measure-Generate Paradigm The select-
measure-generate paradigm for synthetic data generation
consists of the following three steps (McKenna, Miklau,
and Sheldon 2021):
• Select a set of queries (low-dimensional marginals) based

on the expected workload.
• Measure the selected queries with a noise addition mech-

anism to obtain private marginals.
• Generate synthetic data that explains the noisy measure-

ments well.
Due to the post-processing property of differential-

privacy (Dwork, Roth et al. 2014), given an output from a
differentially-private function, we can perform further data
analysis on it without any additional loss in privacy. There-
fore, privacy analysis in the above Select-Measure-Generate
paradigm can be focused on the first two steps.

MWEM Algorithm The Multiplicative Weights and Ex-
ponential Mechanism (MWEM) algorithm is an iterative al-
gorithm for constructing a synthetic dataset whose answers
to queries is close to that on the original dataset (Hardt,
Ligett, and McSherry 2012). MWEM takes as input the orig-
inal dataset D and a set Q of linear queries.4 Besides this,

4A linear query (also called counting or statistical query) is
specified by a function q mapping data records to the interval

two parameters of interest are epsilon value ε and the num-
ber of iterations T . We refer the reader to (Hardt, Ligett,
and McSherry 2012) for a pseudo-code of the MWEM algo-
rithm. The algorithm produces a distribution A over D such
that the difference between q(A) and q(D) is small. MWEM
repeatedly samples a query for which the difference is still
large and updates the weight that A places on each record x.
MWEM satisfies ε-differential privacy by leveraging the ex-
ponential mechanism (McSherry and Talwar 2007) to sam-
ple query, and the Laplace mechanism (Dwork et al. 2006)
to add noise in the query results.

Other Marginal-Based Algorithms The challenge that
marginal-based generation algorithms aim to overcome is
that the problem quickly becomes intractable when opti-
mising over distributions which best explain the generated
marginals (McKenna and Liu 2022). Consider a dataset with
a large number of attributes A and each attribute having
large (discrete) domain. Even enumerating all possible en-
tries would be very memory demanding.

PGM A common way to overcome this is to restrict atten-
tion to certain joint distributions that have tractable represen-
tations. Probabilistic Graphical Models (PGM) represent the
possible space of distributions of synthetic data as a graph-
ical model Pθ (McKenna, Sheldon, and Miklau 2019). The
parameter vector θ is much smaller than the distribution P ,
allowing us to overcome the curse of dimensionality. PGM
work well in practice having won the 2018 NIST Synthetic
Data Competition and its follow up Temporal Map Compe-
tition (McKenna, Miklau, and Sheldon 2021).

Relaxed Tabular An alternative approach called Relaxed
Adaptive Projection (RAP) restricts attention to so-called
pseudo-distributions that can be represented in a relaxed tab-
ular format (Aydore et al. 2021). The format is similar to a
one-hot encoding (although entries need not be 0 or 1) and
the size of this table is a tunable hyperparameter. Although
convergence to the optimum is not guaranteed due to its non-
convexity, it too works well in practice.

Local Consistency Local Consistency methods such as
Generative Networks with the Exponential Mechanism
(GEM) (Liu, Vietri, and Wu 2021) and Approx-Private-
PGM (APPGM) (McKenna et al. 2021) work by imposing
local consistency constraints on the noisy marginals, as op-
posed to searching over the space of possible distributions.
The scalability of local consistency (much like relaxed tab-
ular) depends on the size of the largest marginal as opposed
to the size of the junction tree in PGMs, thereby resulting in
better scalability at the cost of relying on heuristics.

B Minor Details Omitted from Section 5
A problem we encountered during our experimentation was
that the compilation time of our MPC code was quite long.
This often resulted in the client-side code making a connec-
tion to a not as of yet open port. This was fixed by adding

[−1, 1]. The answer of a linear query on a dataset D, denoted by
q(D), is the sum

∑
x∈D q(x) ·D(x)



sleep statements in certain places (it did not affect the com-
parison results though). We considered the MPC app send-
ing over compiled byte code instead of the raw source code
as a potential fix. But in the end, we followed the same strat-
egy as (Zhao et al. 2023) and agreed that the ability to ex-
amine the raw source code by an end user offered a useful
protection against malicious actors. Nevertheless, synchro-
nisation between the encryption and computation agents re-
garding when the MPC program is ready to accept a client
connection is a challenge that must be overcome for wider
adoption.

We also note that we did not benchmark the performance
of PGM and Local Consistency with the MPC only ap-
proach. This is because the ecosystem for running MPC pro-
grams is still developing and as such there is no mechanism
to take an existing library such as MBI and compile it to
MPC code. This is exacerbated by the many dependencies
of MBI on different ML libraries. Even MP-SPDZ, which
includes machine learning capabilities, only implements a
limited range of functionality from popular ML libraries.
Extrapolating from our results from MWEM, we can rea-
sonably expect the MPC only approach to scale poorly, but
this would be an interesting direction for further investiga-
tion.


