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Abstract

Training datasets for machine learning often have some form
of missingness. For example, to learn a model for deciding
whom to give a loan, the available training data includes in-
dividuals who were given a loan in the past, but not those
who were not. This missingness, if ignored, nullifies any fair-
ness guarantee of the training procedure when the model is
deployed. Using causal graphs, we characterize the missing-
ness mechanisms in different real-world scenarios. We show
conditions under which various distributions, used in popu-
lar fairness algorithms, can or can not be recovered from the
training data. Our theoretical results imply that many of these
algorithms can not guarantee fairness in practice. Modeling
missingness also helps to identify correct design principles
for fair algorithms. For example, in multi-stage settings where
decisions are made in multiple screening rounds, we use our
framework to derive the minimal distributions required to de-
sign a fair algorithm. Our proposed algorithm decentralizes
the decision-making process and still achieves similar perfor-
mance to the optimal algorithm that requires centralization
and non-recoverable distributions.

1 Introduction
Algorithmic decision making is increasingly being used in
applications of societal importance such as hiring (Miller
2015), university admissions (Matthews 2019), lend-
ing (Levin 2019), predictive policing (Hvistendahl 2016),
and criminal justice (Northpointe 2012). It is well known
that algorithms can learn to discriminate between indi-
viduals based on their sensitive attributes such as gender
and race, even if the sensitive attribute is not explicitly
used (Barocas and Selbst 2016). As a result, there has been
a lot of recent research on ensuring the fairness of auto-
mated (Barocas, Hardt, and Narayanan 2018), and machine-
aided (Green and Chen 2019) decision making. A common
way to mitigate fairness concerns is to include fairness con-
straints in the training process. For example, demographic
parity constrains acceptance probability to be same across
sensitive groups whereas equalized odds constrains accep-
tance probability given true outcome to be the same.

These fairness-enhanced classifiers are generally trained
and evaluated on datasets containing historical outcomes
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and features. However, a critical (and often unavoidable)
limitation of this approach is that the datasets present only
one side of the reality. There are often systematic bi-
ases that determine whose data is included in (or excluded
from) the datasets. For example, consider the German credit
dataset (Dua and Graff 2017) that contains profiles of peo-
ple whose loans were approved and the outcome measured
is whether they repaid their loan or not. The phenomenon
is further illustrated in Figure 1. One may train a classifier
on this data that satisfies certain fairness constraints (e.g., as
done by Hardt et al. (2016)) to predict potential defaulters.
But when the classifier is used to decide credit-worthiness
of future applicants, it can be arbitrarily unfair, even if it
satisfies the fairness constraints on the training data (Kallus
and Zhou 2018). The reason is, in the real-world, the classi-
fier needs to decide for all incoming applications, whereas
the training dataset only contains profiles of people who
were given loans. Similar results follow for applications in
recidivism prediction (Lakkaraju et al. 2017) and health-
care (Nordling 2019; Rajkomar et al. 2018).

𝑋 (features) can be age, gender, salary, education, job, references, credit history etc.
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Figure 1: Missingness in Training Data due to Past Decisions

In this paper, we provide a formal framework to reason
about the effect of data missingness on algorithmic fairness,
a generalized version of the special cases discussed above.
We use a recently proposed causal graph framework (Mo-
han and Pearl 2020) to model how different types of past
decisions affect data missingness. We formally show, for ex-
ample, that if the past decisions are fully automated, miss-
ingness in data is relatively easier to handle. On the other
hand, if missingness is caused by human (or machine-aided)
decisions, then it is often impossible to learn many distribu-
tions correctly, no matter how large the dataset is. This im-
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possibility implies that the fairness guarantees of algorithms
using such distributions cannot hold in practice.

Modeling data missingness also facilitates the design of
better fairness algorithms for practical use. We demonstrate
this by considering a multi-stage decision making scenario.
At each stage of the selection process, decision makers ob-
serve new features about the individuals who pass the previ-
ous stage, and decide whether to forward an individual to the
next stage or not. We show how to model data missingness
in this setting using the causal graph framework and reason
about the distributions that can (and can not) be used in a fair
algorithm for multi-stage setting. We use these observations
to propose the first detail-free and decentralized algorithm
for multi-stage settings without compromising on accuracy,
unlike past work that requires centralization and knowledge
of non-recoverable distributions.

Summary of Our Main Contributions
• We show how to use a causal graph-based framework for

modeling data missingness in common scenarios from the
fairness literature. We provide results on which parts of
the joint data distribution can be recovered from incom-
plete available data and which cannot be recovered. Criti-
cally, in many scenarios of missingness, the distributions
used in common fairness algorithms are not recoverable.

• We show how the above results can guide the design
of fair algorithms in practice by proposing a detail-free,
decentralized and fair algorithm for multi-stage setting.
Our theoretical and empirical analysis on three real-world
datasets shows that the algorithm provides same utility
as an optimal algorithm which assumes full centralization
and knowledge of non-recoverable distributions.

2 Background and Related Work
Distribution shift is a well-known problem in machine learn-
ing. This shift may be, for example, a covariate (P (X))
shift, a concept (P (Y |X)) shift or even a target (P (Y )) shift.
While this is a broad research domain, we consider the spe-
cific setting of decision-making where the data available for
training has a systematic missingness due to past decisions.

Notation We use the following notation throughout the
paper. We use X for the non-sensitive features about indi-
viduals, Z for the sensitive attribute, U for the ‘unobserved
features’, D for past binary decisions, Y for the outcome re-
alized under the given decision in the past, and Y c for the
counterfactual outcome if the past decision was reversed.
The term ‘unobserved features’ here means that such fea-
tures are not at all measured (not considered during data col-
lection or are impossible to be measured) whereas the term
‘missingness in data’ means that the values of variables are
not present in some rows of the dataset.

Data Missingness in Fairness
While data missingness problem in fairness has received
some attention, different papers consider different scenar-
ios and lack a common terminology and framework for data
missingness. We categorize the types of missingness studied

in the fairness literature in Table 1. The first category corre-
sponds to datasets where the outcome Y is missing for cer-
tain rows and the second category addresses a bigger prob-
lem when entire rows of (X,Y, Z) are missing. Thus, the
first category is subsumed in the second category and ad-
dresses a relatively easier problem. Kilbertus et al. (2020)
and Ensign et al. (2018) may also be placed in the first cat-
egory since they consider sequential decision making set-
tings and there is no hard constraint that X,Z are missing
for D = 0. Kallus and Zhou (2018) study a setting where
X,Y, Z all are missing for D = 0 and propose a weighting-
based solution that assumes access to an unlabeled dataset
with no missingness. We extend their work by providing a
formal graphical framework to reason about missing data
that can apply to any decision-making scenario.

The third category is for specialised scenarios whereD di-
rectly affects Y . The focus in our paper is on the second cat-
egory where the decision itself does not affect a person’s out-
come (e.g., awarding a loan does not increase the chances of
a person paying it back), which is perhaps the most common
setting for algorithmic decision-making. Finally, Liu et al.
(2018); Hu and Chen (2018); Hu, Immorlica, and Vaughan
(2019); Milli et al. (2019); Tabibian et al. (2019); Mouzan-
nar, Ohannessian, and Srebro (2019); Creager et al. (2020)
consider the effect of D on future X,Z distribution in se-
quential decision making, which is a different problem but
also presents missingness related challenges.

Missingness
in Variables D affects Y? Related Work

Only Y is
missing in the
rows corre-
sponding to
D = 0.

No (Lakkaraju et al.
2017)

Entire rows
(X,Y, Z) cor-
responding to
D = 0 are
missing.

No

This Paper + (Kallus
and Zhou 2018; En-
sign et al. 2018; Kil-
bertus et al. 2020)

Only Y c is
not observed,
X,Y, Z have
no missing-
ness.

Yes

(Jung et al. 2018;
Coston et al. 2020;
Kallus and Zhou
2019)

Table 1: Categorization of Related Work

Causal Graphs for Data Missingness
To model data missingness in a principled manner, we will
use the causal graph framework proposed by [(Mohan and
Pearl 2020; Mohan, Pearl, and Tian 2013; Mohan and Pearl
2014; Shpitser, Mohan, and Pearl 2015)]. The main idea in
this framework is to model the missingness mechanism as a
separate binary variable. If the missingness variable takes a
value 0, we observe the true value of the corresponding vari-
able, otherwise the value is missing. Which variables affect
the missingness variable decide the impact of missing data
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on estimating key quantities using the observed data. For
example, if the missingness of a variable X is caused by a
variable independent from all others (e.g., a uniform random
variable), then the missingness has no effect on computing
P (X). However, if the missingness of X is caused by it-
self (e.g., people with X < 20 deciding not to reveal their
data), then using the d-separation criteria (Pearl 2009) and
the results of Mohan and Pearl (2020), we can show that it
is impossible to estimate (recover) P (X). An illustrative ex-
ample is included in the supplementary material1; more de-
tails on identification with missing data are in Bhattacharya
et al. (2020); Nabi, Bhattacharya, and Shpitser (2020).

3 Implications of Data Missingness for Fair
Machine Learning Algorithms

We consider the settings where past binary decisions impact
missingness in the training data (X,Y, Z). If the decision D
for an individual was 1, then the corresponding row con-
taining (X,Y, Z) is present in the dataset otherwise it is
missing. Such missingness is perhaps the most common in
datasets used in the fairness literature, including in loan de-
cision datasets (Dua and Graff 2017) (no data from declined
loan applicants) or law enforcement datasets such as search
for a weapon (Goel et al. 2016) (no data for the individuals
who are not searched by police). In this section, we show
how missingness affects fairness algorithms by corrupting
their estimation of error rates (for equalized odds (Hardt
et al. 2016)), allocation rates (for demographic parity (Za-
far et al. 2017)), and probabilities P (Y |X), P (Y |X,Z),
P (X,Z) and P (X). All proofs are in the supplement.

Algorithms Requiring Error Rate or Allocation
Rate Estimates

Figure 2: Data Missingness Mechanism as Causal Graph.
Shaded nodes are observed, unshaded ones are not observed
in the training data. For instance, the node Y ∗ denotes the
outcomes for people whose data is observed and Y denotes
the (possibly not observed) outcomes for everyone.

Consider the causal graph shown in Figure 2. In this graph,
nodes X , Z and Y represent the random variables for non-
sensitive features, the sensitive attribute and the outcome re-
spectively. For each of these nodes, we show a starred and
shaded node. These nodes represent the random variables
that we actually observe in the training data. Each starred
node also has an incoming arrow from a “missingness vari-
able”. In our case, this missingness variable is the same as

1The supplementary material is available at https://goelnaman.
github.io/upload/doc/papers/2021/goel aaai21 supp.pdf.

past decisions variable D. X∗ = X , Z∗ = Z and Y ∗ = Y
when D = 1 and are missing otherwise. The incoming ar-
rows to the missingness variable show which other variables
affect the missingness in data. Figure 2 can be interpreted
as showing the missingness mechanism for the lending sce-
nario as follows: the past loan decision D for an individual
is based on their features X (and possibly Z) and the fea-
tures X determine their payback outcome Y . Values for X ,
Y , Z are observed in the training data only if D = 1 as
shown by the arrow from D to X∗, Y ∗, and Z∗. This causal
graph captures simplistic settings but as we will show later,
it is possible to represent more complex settings in a similar
way. For our current discussion, this graph is sufficient. The
relations between variables can be stochastic, and non zero
support is assumed. Most of the results in this paper don’t
change even if the edge between Z and D is removed.

Error Rate To ensure equal opportunity while predicting
outcome Y , multiple algorithms have been proposed based
on adjusting the error rates (Hardt et al. 2016; Pleiss et al.
2017) of classifiers. To obtain the error rate estimate of a
classifier, the standard procedure is to use the classifier to
predict Ŷ on i.i.d. samples of the data and compare it to Y .
However, since the data is incomplete, we do not have ac-
cess to Ŷ and Y . Instead, we observe Ŷ ∗ (predictions on
the available samples) and we compare them to Y ∗ (out-
comes for the available samples). Therefore, while the true
error rate of the classifier for a group Z is P (Ŷ |Y,Z), we
end up estimating P (Ŷ ∗|Y ∗, Z∗) due to incomplete data.
Since P (Ŷ ∗|Y ∗, Z∗) = P (Ŷ |Y, Z,D = 1) (by definition),
P (Ŷ ∗|Y ∗, Z∗) estimated from the available data is not equal
to the true P (Ŷ |Y,Z) unless Ŷ and D were independent
given Y and Z. Using d-separation, we can confirm in Fig-
ure 2 that Ŷ 6⊥⊥ D|Y,Z. This leads to the following result.

Proposition 1. For a classifier, its group error rates esti-
mated naively from the incomplete data (with missingness
mechanism shown in Figure 2) are inconsistent.

This result is neither surprising nor technically challenging
to obtain but its implications are often ignored while design-
ing fairness algorithms. The proposition implies that 1) no
matter how many data samples we may have, naive error rate
estimates based on data with systematic missingness will be
incorrect, and 2) fairness algorithms that rely on estimating
such estimates from incomplete data will fail to meet the
constraints in practice. That is, if such a loan decision algo-
rithm was deployed in practice and exposed to all applicants,
fairness would not be guaranteed.

Allocation Rate A follow up question is whether fairness
algorithms that guarantee demographic parity also fail in
practice if trained on incomplete data. For demographic par-
ity, one doesn’t need to equalize error rates across groups
but only the allocation rates P (Ŷ |Z). The question can be
easily answered using a similar reasoning with the causal
graph shown in Figure 2. The observed estimate of alloca-
tion rate is P (Ŷ ∗|Z∗) = P (Ŷ |Z,D = 1) whereas the true
allocation rate is P (Ŷ |Z). It is easy to see in Figure 2 that
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(a) (b) (c) (d) (e) (f)

Figure 3: Data Missingness due to Fully Automated (3a,3b), Human (3c, 3d) and Machine-Aided Decision Making (3e,3f).

P (Ŷ |Z,D = 1) 6= P (Ŷ |Z) since Ŷ is not d-separated from
D given Z (Ŷ 6⊥⊥ D|Z). We can conclude that if a fairness
algorithm naively estimates allocation rates from incomplete
data to enforce demographic parity constraints, then it will
fail to meet the constraints on the general population.

We next show that causal graph based modeling is a pow-
erful framework that allows us to compute general identifi-
cation results by modeling data missingness in a wide va-
riety of scenarios, including fully automated, human and
machine-assisted decision-making. It is interesting to note
that in our discussion, we make no assumption about the
fairness or unfairness of the past decisions that cause miss-
ingness in the training data.

Algorithms Requiring Estimates of P (Y |X),
P (Y |X,Z), P (X), P (X,Z)

Several algorithms in the fairness literature require distribu-
tions like P (Y |X), P (Y |X,Z), P (X) or P (X,Z) (Celis
et al. 2019; Corbett-Davies et al. 2017; Valera, Singla, and
Rodriguez 2018). However, it is unclear under what condi-
tions these distributions can be recovered from the available
data. We consider the different ways by which past decisions
are typically made: by an algorithm, by a human, or by a
human based on an algorithm’s recommendation. For each
setting, we model the causal process by which the data may
be missing and show how these variations effect the recov-
erability of true distributions from available data.

Fully Automated Decision-Making In the case of fully
automated decision-making, while a lending dataset may ex-
clude people whose loans were not approved, for the in-
cluded persons it is likely to include all the features that
were used by the loan approval algorithm to make its de-
cision. Example causal graphs for this type of missingness
are shown in Figures 3a and 3b.
Proposition 2. For the missingness mechanism shown in
Figure 3a, both P (Y |X) and P (Y |X,Z) can be consis-
tently estimated from the incomplete data whereas P (X)
and P (X,Z) are not recoverable.
The above proposition implies that, given enough data sam-
ples, the conditional distributions can be recovered easily
from incomplete data even if past decisions were based
on sensitive attributes. The main idea in the proof remains
the same as we discussed for Proposition 1 i.e. using the
d-separation criteria to determine whether Y is condition-
ally independent of the missingness variable D given X or
givenX and Z. However, the observation in this Proposition

changes as soon as we relax one assumption and consider the
causal graph shown in Figure 3b where the sensitive attribute
Z directly affects Y (e.g., if person is likely to face direct
discrimination based on Z after being awarded the loan or
after being hired, affecting their observed outcome).

Proposition 3. For the missingness mechanism shown in
Figure 3b, P (Y |X,Z) can be consistently estimated from
the incomplete data but a naive estimate of P (Y |X) is not
consistent. P (X) and P (X,Z) are not recoverable.

The above proposition says that no matter how many data
samples we have, our naive estimate of P (Y |X) will not
converge to the true value. However, it only establishes the
inconsistency of a naive estimate of P (Y |X) and it re-
mains an interesting open question if P (Y |X) is not re-
coverable (i.e. there exists no consistent estimator). Note
that in both Propositions 2 and 3, P (X) and P (X,Z) are
not recoverable i.e. there exist no estimators for P (X) and
P (X,Z) that converge to the true values, even with in-
finitely many data samples. Non-recoverability of a distribu-
tion is a stronger result compared to non-consistency of its
naive estimator. In general, if there is a direct edge between
a variable and its missingness mechanism (in this case, be-
tweenX andD), then the corresponding distribution is non-
recoverable (Mohan and Pearl 2020). Therefore, in typical
datasets created from fully automated decision-making, it is
not possible to “fix” a fairness algorithm that relies on P (X)
or P (X,Z) by modifying the estimator. The only way is to
assume external knowledge as Kallus and Zhou (2018) do
or collect additional data for estimating P (X). In further
discussion, we will only focus on P (Y |X,Z), P (X) and
P (X,Z) and will assume Z does not directly affect Y .

Human Decision-Making A distinguishing characteristic
of human decision-making is that it often involves ‘unob-
served features’. Lakkaraju et al. (2017) provide an example:
a human judge can observe whether a defendant is accompa-
nied by their family during trial and this may also affect their
outcome (whether they recidivate or not). In the resulting
training data, however, this feature may be completely ab-
sent. In addition, the recidivism outcome and other features
would only be available for defendants that were released
and missing for others. This is shown in the causal graphs
in Figures 3c and 3d (obtained from Figure 3a by adding U
for unobserved features). The difference between Figures 3c
and 3d is whether U affects Y directly or through X .

Proposition 4. For the missingness mechanism shown
in Figure 3c, P (Y |X,Z) can be consistently estimated
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(Pleiss et al.
2017) with FPR
Constraints

(Pleiss et al.
2017) with FNR
Constraints

(Kamiran et al.
2012) with SP
Constraints

(Kamiran and Calders 2012) (Celis et al.
2019) with FDR
Constraints
(τfdr = 0.8)

ADULT
FPRD:
0.0725

(−0.00724)

FNRD:
0.0377

(0.00295)

SPD:
−0.1137

(−0.0390)

SPD: −0.2410 (−0.0705)
DI: 0.5566 (0.7785)

AOD: −0.1486 (0.0188)
EOD: −0.1327 (0.0293)

γfdr
0.63

(0.68)

COMPAS
FPRD:
0.061

(−0.00155)

FNRD:
0.099

(0.0056)

SPD:
−0.2651
(0.0229)

SPD: −0.2340 (−0.1188 )
DI: 0.7402 (0.8342)

AOD: −0.2237 (−0.0946)
EOD: −0.2266 (0.0111 )

N/A

Table 2: Difference in Test (and Train) Performance of Fair ML Algorithms under Training Data with Missingness. FPR stands
for false positive rate, FNR for false negative rate, FDR for false discovery rate, SP for statistical parity, AO for average odds,
EO for equal opportunity, DI for disparate impact, and γfdr is the meta-fair classifier’s fairness metric (closer to 1 is better for
DI and γfdr). The suffix D denotes the difference in corresponding metric between the privileged and the unprivileged groups.

whereas for the mechanism shown in Figure 3d, P (Y |X,Z)
is not recoverable. P (X) and P (X,Z) are not recoverable
in either of the two mechanisms.

Machine Aided Decision-Making Another common
form of decision making is machine aided decision mak-
ing or algorithm-in-the-loop decision making. In this case,
a human receives feedback from an algorithm before mak-
ing their decision. Consider the causal graphs shown in Fig-
ures 3e and 3f (obtained from previous graphs by adding a
variable Da representing algorithm’s feedback).

Proposition 5. For the missingness mechanism shown in
Figure 3e, P (Y |X,Z) can be consistently estimated from
the incomplete data whereas for the mechanism shown
in Figure 3f, P (Y |X,Z) is non-recoverable. P (X) and
P (X,Z) are not recoverable in both these cases.

The above proposition implies that the new variable Da in
hybrid decision making doesn’t pose additional challenges
in the estimation of P (Y |X,Z) distributions but the usual
challenges due to human involvement continue to exist.

Empirical Implications of Data Missingness
Kallus and Zhou (2018) showed that a supposedly equal op-
portunity classifier of Hardt et al. (2016) trained on New
York Stop, Question and Frisk dataset (NYCLU 2017) does
not ensure equal opportunity in the general NYC popula-
tion: it wrongly targets up to 20% of white-Hispanic, 16%
of other, and 14-15% of black innocents, but only 11%
of white-non-Hispanic innocents. We present several semi-
synthetic experiments using the Adult (Dua and Graff 2017)
and the COMPAS (Angwin et al. 2016) datasets to show that
this is a more general phenomenon, across different datasets,
algorithms and fairness metrics.

We created synthetic missingness in these datasets based
on the following procedure. We trained a logistic regression
classifier from the scikit-learn library (Pedregosa et al. 2011)
and then deleted the records from the training set for which
the classifier’s predicted probability for the favourable class
was below a certain threshold. We chose the threshold to

be low enough (0.06 for Adult and 0.55 for COMPAS)
to ensure that the label distribution in the resulting dataset
does not become very skewed. We did not delete any record
from the test set (preserving the general distribution with-
out any missingness). Note that such semi-synthetic experi-
ments are necessary because of the unavailability of datasets
with and without missingess. We then trained fairness algo-
rithms with different underlying principles (pre-processing,
in-processing and post-processing) on this semi-synthetic
training data, using example code provided in IBM’s AI
Fairness 360 library (Bellamy et al. 2019). In particular, we
studied the calibrated equalized odds post-processing algo-
rithm of Pleiss et al. (2017), the reject option classifier of
Kamiran, Karim, and Zhang (2012), the re-weighting pre-
processing algorithm of Kamiran and Calders (2012), and
the meta-fair classifier of Celis et al. (2019). The choice of
fairness metrics and datasets in the experiments is governed
by the example code provided for respective algorithms. For
the meta-fair classifier, we set the τfdr hyper-parameter to
0.8 as provided in the example code.

The results are summarized in Table 2. For every algo-
rithm, we compare the fairness measures observed on the
test set and the censored training set (in parenthesis). For the
pre-processing algorithm by Kamiran and Calders (2012),
we show the fairness measures on the test set when there is
synthetic missingness in the training set, and in parenthesis,
we show the fairness measures on the test set when there is
no missingness in the training set. The table shows that all
algorithms show significant disparities in their fairness met-
ric due to missing data. In many cases, there is an order of
magnitude difference (over 10X) between the fairness metric
on the test and (censored) train data, validating our theoreti-
cal claims about the implications of data missingness.

Discussion
Importance of Knowing Precise Causal Structure
While the causal graphs we discussed are not exhaustive,
the framework (and the same proof technique) can be used
for deriving recoverability results in any new scenario. The
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framework doesn’t need knowledge of precise relations be-
tween all variables but we note that it is not enough to only
model the existence of relation between variables; the di-
rection of causal relation is also important. For example, we
assumed that the featuresX cause the outcome Y . However,
in some settings, the reverse may be true. That is, the target
variable Y (e.g. skill Y ) of a person causes/determines their
featuresX (e.g. test scores). This may affect the conclusions
about estimation of distributions. Consider, for example, the
graph shown in Figure 3c. Reversing the edge between X
and Y in this graph affects the corresponding observation
stated in Proposition 4: a naive estimate of the distribution
P (Y |X,Z) is not consistent in the new graph. Thus, it is
important to understand the domain of interest and reason
about the effects of the data censoring mechanism on the
learning algorithms accordingly.

Better Data Collection Practices While missingness in
the labels is unavoidable, missingness in the unlabeled data
can be avoided by adopting better data collection practices.
This may be exploited to provide better fairness guarantees,
as in Kallus and Zhou (2018). Similarly, challenges due to
human involvement can be addressed by designing data (fea-
tures) collection process that better capture human decision-
making, or by exploiting random variations that remove the
effect of unobserved variables (Kleinberg et al. 2017).

4 Application: Multi-Stage Decision Making
The framework and the results presented in the previous sec-
tion are not only useful for critically evaluating existing fair-
ness algorithms but also for designing new algorithms. In
this section, we present one such example: the case of multi-
stage decision-making. Multi-stage processes are common,
e.g., in hiring, university admissions and even in lending. At
each stage of the selection process, decision makers request
or collect new features about the individuals and make deci-
sions on whether to forward an individual to the next stage or
not. Each stage of the selection process narrows down (sub-
ject to budget constraints) the pool of individuals and more
features are observed in the subsequent stages for individu-
als who pass the previous stage.

(a) Stage 1 (b) Stage 2

Figure 4: Data Missingness in 2-Stage Process (Z ∈ X1)

Figure 4 shows an example of a 2-stage decision process for
hiring where stages represent independent organizations or
teams evaluating the applicants (e.g., a recruitment agency
in the first stage and the hiring entity itself in the second

stage). As before, the decision D1 in the first stage causes
missingness in the features X1 and the first stage’s outcome
(whether additional features X2 are collected for the indi-
vidual). Similarly, in the second stage, the decision D2 se-
lects the final individuals and affects missingness of both
(X1, X2) and the outcome Y : success outcome Y is ob-
served only for individuals who passed the second stage
(and consequently, also the first stage). Typically, (X1, X2)
is also recorded only for those individuals.

Proposition 6. For the 2-stage missingness mechanism
shown in Figure 4, P (Y |X1) and P (Y |X1, X2) can be
recovered from the incomplete data but joint distribution
P (X1, X2) is not recoverable.

Consider a scenario where an incomplete dataset (result-
ing from past multi-stage decision making as shown in Fig-
ure 4) is available for learning distributions that we can
use for a future application (which again is a similar multi-
stage decision making application). Emelianov et al. (2019)
propose an algorithm for a multi-stage decision-making ap-
plication. However, the algorithm assumes full knowledge
about the joint distribution of all features of the population,
which according to Proposition 6 is not recoverable from
incomplete data. Moreover, in decentralized settings each
stage makes decisions on its own and feature distribution of
all the applicants may not be shared between stages. There-
fore, we explore another dimension of the solution space,
which is to design algorithms without requiring distributions
that cannot be recovered from incomplete data.

The DF 2 Algorithm for Detail-Free, Decentralized
and Fair Multi-Stage Decision Making
Problem Formulation Given a pool/batch of individuals,
we want to find optimal decision rules Di for each stage
i such that the precision of the decision rule is maximized
subject to constraints on the budget (fraction of individuals
to be selected at that stage) and fairness. We assume that
additional features are observed at each stage, so stage 1
observes X1 features, and stage i observes {X1, X2, ...Xi}
features. Emelianov et al. (2019) have shown that when the
budget is fixed, maximizing precision is equivalent to max-
imizing true positive rate, true negative rate, accuracy and
f1-score; and minimizing false positive rate and false nega-
tive rate. Let Y represent the true outcome (i.e. success in
job) and Ŷi denote the action taken for an individual at stage
i (whether the individual is given a job or not). Di is the op-
timization variable at stage i. It is a vector of real numbers
between 0 and 1. The size of Di is equal to the total num-
ber of individuals at stage i. For an individual j, Di[j] is the
probability of being selected at jth stage, i.e., probability
that Ŷi = 1. Assume k stages in the entire process.

DF 2 Algorithm The DF 2 algorithm solves the follow-
ing optimization problem at every stage i ∈ {1, 2, . . . k}:

max
Di

P (Y = 1|Ŷi = 1)

s.t. P (Ŷi = 1) = αi

fi(Ŷi) = 0

(1)
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where P (Y = 1|Ŷi = 1) is the precision of the decisions
taken at stage i, P (Ŷi = 1) = αi is the budget constraint at
stage i, and fi(Ŷi) = 0 is the fairness constraint at stage i.

Precision P (Y = 1|Ŷi = 1) can be replaced by an empirical
estimate using the conditional risk scores P (Y |X1, . . . , Xi)
of the individuals at stage i, where {X1, . . . , Xi} is the set
of features observed by the algorithm at stage i. We assume
that the sensitive attribute is observed in the first stage, i.e.
Z ∈ X1. Let ni be the total number of individuals at stage i,

P (Y = 1|Ŷi = 1) ≈ 1

αi

ni∑
j=1

Di[j] · Pj(Y |X1, . . . , Xi)

ni

For budget constraint on the fraction of individuals selected
at stage i, we define this fraction w.r.t to the total number of
individuals in the first stage (i.e. n1). The constraint can be
written as follows using an empirical estimate:

P (Ŷi = 1) ≈
∑ni

j=1Di[j]

n1

Demographic parity fairness constraint is P (Ŷi = 1|Z =

b)− P (Ŷi = 1|Z = w) = 0; Z being the sensitive attribute.
Equality of opportunity fairness constraint is P (Ŷi = 1|Y =

1, Z = b) − P (Ŷi = 1|Y = 1, Z = w) = 0. The proba-
bilities in fairness constraints can again be replaced by their
empirical estimates and in terms of only the decision vari-
ables Di, the sensitive attribute Z and the conditional dis-
tribution P (Y |X1, . . . , Xi). We thus get a linear optimiza-
tion problem in the decision variables Di. Note that we only
used the conditional distributions P (Y |X1 . . . Xi) in the op-
timization problem, and as discussed earlier, these distribu-
tions can be consistently estimated from incomplete data.
We enumerate the steps of DF 2 in a two stage process for
more clarity in the supplementary material.

Advantages of DF 2 While the primary advantage of
DF 2 is that it doesn’t require knowledge about the joint
distributions P (X1, . . . , Xk) (hence the name detail-free),
it also offers another interesting advantage over the optimal
algorithm of Emelianov et al. (2019). Theirs is essentially a
centralized approach assuming that a single decision maker
is controlling all stages of the selection process and thus,
is able to find and enforce the optimal parameters for each
stage. But in many realistic scenarios, independent agencies
are responsible for implementing different stages without
any communication or data sharing. The DF 2 algorithm is
a decentralized approach and each stage can make its deci-
sions independently of others, without communication.

Theoretical Analysis
While our proposed algorithm offers the advantages of be-
ing detail-free and decentralized, an important question is
whether it returns a solution with lower precision compared
to an optimal algorithm (an oracle algorithm that knows the
joint distribution)? Consider a two stage selection process
with fairness constraints and α1 and α2 budget constraints

in the two stages. Let r1 and r2 denote the random vari-
ables P (Y |X1) and P (Y |X1, X2). We know from (Menon
and Williamson 2018; Corbett-Davies et al. 2017) that op-
timization problem of the form used in DF 2 results in sub-
group specific thresholds on the risk scores (i.e. individuals
above their subgroup specific threshold are selected and ev-
eryone else is rejected). Let δz(α1) be the threshold (for a
subgroup z) on r1, and let δz(α2) be the threshold on r2 as-
suming that the first stage doesn’t exist (i.e. all individuals
from the first stage are made available to the second stage).
Let α2 < α1 < 1, which implies that δz(α2) > δz(α1)
since lower budget means higher threshold. Further, let D
denote DF 2’s output decision vector for all individuals that
were initially present in the first stage (i.e.D[j] = 1 for indi-
viduals selected in the final stage by the DF 2 algorithm and
D[j] = 0 for everyone else). Let DO be the output decision
vector of an oracle algorithm for same pool of individuals,
budget and fairness constraints. We further assume:

Assumption 1 (Coherent Features Assumption). For any
m′,m ∈ [0, 1] such that m′ ≥ m, the following is true

P (r1 ≥ δz(α1)|r2 ≥ m′) ≥ P (r1 ≥ δz(α1)|r2 ≥ m)

This fairly weak assumption intuitively means that knowing
that someone has a higher r2 does not decrease the proba-
bility of their r1 being above a threshold. The assumption
is quite natural if the feature sets X1 and X1, X2, in expec-
tation, provide coherent information about the outcome Y .
For example, when filtering job candidates, extra informa-
tion (such as letters of recommendation) may be collected at
a second stage. The assumption states that, on average, LoRs
and first-stage scores don’t provide conflicting information.

Theorem 1. Under the coherent features assumption, for
budget constraints given by α1 and α2 on the fraction of in-
dividuals selected in the first and second stages, respectively,
and demographic parity or equal opportunity constraint w.r.t
outcome Y , the probability that DF 2’s output decision vec-
tor D has lower precision compared to the oracle’s output
decision vector DO (i.e. P (D 6= DO)) is upper bounded as

P (DO 6= D) ≤ P (r1 < δz(α1)|r2 = δz(α2)),

where r1 and r2 denote the random variables P (Y |X1) and
P (Y |X1, X2), δz(·) denotes the subgroup specific threshold
discussed above, and P (·) denotes probability.

The above theorem shows that the probability of getting a
suboptimal solution in DF 2 depends on: 1) the distribution
of the risk scores r1 and r2 (which are derived from the fea-
ture setsX1 andX1, X2 respectively) used in the two stages,
and 2) the budgets α1 and α2 of the two stages. With increas-
ing positive correlation between r1 and r2 (e.g., more agree-
ment between first-stage scores and LoR), and an increasing
gap between the budgets α1 and α2 (e.g. final hiring being
very selective compared to first stage screening), the proba-
bility of getting a suboptimal solution decreases. The anal-
ysis can be similarly extended to a k-stage process. In the
next section, we empirically show that on real datasets, our
algorithm’s performance is similar to the oracle algorithm.
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Figure 5: Demographic Parity Fairness Constraints
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Figure 6: Equality of Opportunity Fairness Constraints

Empirical Analysis
Datasets We use three real datasets for evaluation that
were also used by Emelianov et al. (2019). In the ADULT
dataset (Dua and Graff 2017), the outcome variable is
salary and the sensitive attribute is gender. In the COMPAS
dataset (Angwin et al. 2016), the outcome variable is recidi-
vism within two years and sensitive attribute is race. In the
GERMAN dataset (Dua and Graff 2017), the outcome vari-
able is returns which represents if an applicant paid back
a loan and sensitive attribute is gender. We discretize all the
features using the same procedure as Emelianov et al. (2019)
(using their code on github). More details are in supplement.

Methodology We simulated a two stage process using the
same sequence of feature observations in the two stages as
Emelianov et al. (2019). In the ADULT dataset, the first
stage observes gender, age, education while the second stage
includes the previous features plus relationship and native
country. In the COMPAS dataset, the first stage observes
race, young (younger than 25) and drugs (arrest due to sell-
ing or possessing of drugs) while the second stage includes
the previous features plus old (older than 45), gender, long
sentence (sentence was longer than 30 days). In the GER-
MAN datatset, the first stage observes gender, job (is em-
ployed), housing (owns house), while the second stage in-
cludes the previous features plus savings (more than 500
DM), credit history (all credits payed back duly) and age
(older than 50). We refer the method by Emelianov et al.
(2019) as EAGGL and consider it the oracle method since
it uses a centralized algorithm assuming knowledge of the
full joint distribution. We compare the utility (equivalent to
precision as discussed earlier) achieved by the DF 2 and the
EAGGL (oracle) algorithms under fairness constraints (both
methods return solutions satisfying fairness constraints).

Observations Figures 5a, 5b and 5c show the comparison
between utility achieved by DF2 and that by EAGGL in the
three datasets, with demographic parity fairness constraints.
The budget of the second stage was fixed at 0.3 (α2 = 0.3)
to match the simulation parameters used by Emelianov et al.
(2019). The budget of the first stage α1 was varied from 0.3
to 1. Clearly, the utility of DF2 matches the optimal util-
ity as achieved by EAGGL. Figures 6a, 6b and 6c show the
same trend for equality of opportunity fairness constraints
as well. We note that EAGGL uses inequality in the bud-
get constraints in non-final stages unlike DF 2 which uses
equality in the budget constraints in all the stages. However,
in our experimental data, we found that despite the inequal-
ity constraints, EAGGL uses the entire budget available to

maximize the precision. So, this difference in optimization
constraints is not a factor to be concerned about while draw-
ing conclusions from the results. We observed similar results
in a three stage process as well (details in the supplement).

Global Fairness Fairness constraints we discussed so
far are also referred to as “local” in multi-stage set-
tings (Emelianov et al. 2019). Unlike local fairness (that re-
quires fairness at every stage), the concept of global fairness
requires only the final stage to enforce fairness. Local fair-
ness is a stronger concept (and in theory, a more costly one)
compared to global fairness. As shown in (Emelianov et al.
2019; Bower et al. 2017), local fairness implies global fair-
ness but the opposite is not true. Local fairness may be a
more desired property in decentralized settings where indi-
vidual stages are accountable for their own decisions and
there is no central authority accountable on the behalf of all
of them.DF 2, by design, satisfies both local and global fair-
ness. Figure 7 shows that the difference in utilities of DF 2

with local (and thus also global) fairness constraints and
EAGGL with only global fairness constraints is marginal.
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Figure 7: EAGGL(Only Global Fairness) vs DF 2

5 Conclusions
Our results show that data missingness has significant im-
plications for fairness algorithms and that it is important to
model the missingness mechanism to accurately train fair
classifiers. We used causal graphs to model missingness
mechanisms in data for various real-world scenarios and dis-
cussed implications of missingness on correctly estimating
distributions used in common fairness algorithms. Our re-
sults also provide useful perspective on correct data collec-
tion practices for fairness in machine learning. While the
graph structures we discussed are not exhaustive, our frame-
work can be applied to new settings by utilizing the causal
structure to determine recoverability of quantities of inter-
est. As an example, we applied our framework to develop
a fair multi-stage decision making algorithm that requires
no centralization between stages and uses only distributions
that are recoverable from incomplete data.
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Broader Impact
This paper discusses a fundamental assumption of availabil-
ity of uncensored training data behind many fairness algo-
rithms, that mostly does not hold in practice. We hope that
the paper will be helpful in designing fair algorithms in the
absence of this assumption. While disposing of this assump-
tion may be possible in many settings, there may be new
assumptions that may have to be introduced in the process.
Specifically, we assumed knowledge of the causal graph and
in the case of multi-stage decision making, the coherent fea-
ture assumption. It is always important to evaluate the suit-
ability of such assumptions in specific applications since the
performance and fairness of the algorithm may be unpre-
dictable if the assumptions are not suitable for the given ap-
plication.
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